
NEW ALGORITHMS FOR FAST AND ACCURATE AM-FM DEMODULATION OF DIGITAL
IMAGES

Paul Rodríguez V. and Marios S. Pattichis

The University of New Mexico
Department of Electrical and Computer Engineering

Albuquerque, N.M. 87111, U.S.A.

ABSTRACT

Multidimensional Amplitude-Modulation Frequency - Mod-
ulation (AM-FM) models allow us to describe continuous-
scale modulations in digital images. AM-FM models have
led to a wide range of applications ranging from image and
video compression, video image segmentation, to image re-
trieval in digital libraries. We present new, two-dimensional
algorithms that provide significant improvements in both
accuracy and speed over previously reported non-parametric
approaches. Results are shown for both real and synthetic
images.

1. INTRODUCTION

Multidimensional AM-FM models provide methods that al-
low for continuous-scale analysis in digital images. Recent
applications of the AM-FM model range from image inter-
polation [1], fingerprint classification [2], image segmenta-
tion [3], and video segmentation [4]. Thus, there is strong
interest in the development of fast and accurate AM-FM de-
modulation methods. We expect that all prior applications
of AM-FM demodulation can benefit from the use of the
proposed algorithms.

For general AM-FM expansions of images, we have:

I(x, y) =
n=M∑
n=1

an(x, y) cos ϕn(x, y). (1)

In (1), an image I(.) is a function of spatial coordinates
(x, y). A collection of M AM-FM component images an(x, y)
cosϕn(x, y), n = 1, 2, . . . , M is used to model essen-
tial image modulation structure. The amplitude functions
an(x, y) are always assumed to be non-negative. We expect
that the Frequency-Modulated components cosϕn(x, y)
will capture fast-changing spatial variability in image inten-
sity. The instantaneous frequency is a vector field defined
in terms of the gradient of each phase function:

Oϕn(x, y) =
(

∂ϕn

∂x
(x, y),

∂ϕn

∂y
(x, y)

)
. (2)

The instantaneous frequency vector Oϕn(x, y) can vary con-
tinuously over the spatial domain of the image. We will
only consider the dominant component approximation [5],
where a single AM-FM component is used to approximate
any given image. We thus consider the AM-FM demodula-
tion problem which requires that we estimate the instanta-
neous amplitude (IA) a(x, y), the phase ϕ(x, y), and the in-
stantaneous frequency vector (IF) Oϕ(x, y) from any given
image.

We develop new algorithms based on multidimensional
extensions of the analytic signal. Our approach is motivated
by the fact that the analytic signal approach can be shown to
be the unique approach that satisfies certain intuitive crite-
ria, including stability criteria, as shown in [6] and extended
in [5].

We summarize existing image demodulation methods in
section 2. New AM-FM demodulation methods are pre-
sented in section 3, and comparative results are shown in
section 4. Concluding remarks are given in section 5.

2. IMAGE DEMODULATION METHODS

For any given image f(.), we compute a two-dimensional
analytic signal, as given in [5]:

fAS(x, y) = f(x, y) + jH2d[f(x, y)], (3)

where H2d denotes the one-dimensional Hilbert transform
operator applied along the rows (or columns). We estimate
the amplitude, the phase, and the instantaneous frequency
using

a(x, y) = |fAS(x, y)|, (4)

ϕ(x, y) = arctan
(

imag(fAS(x, y))
real(fAS(x, y))

)
, and (5)

ω(x, y) = real
[
−j
∇fAS(x, y)
fAS(x, y)

]
. (6)

The algorithm can be summarized into two steps. First, we
compute the analytic signal using (3). Second, we compute
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Fig. 1. Absolute value of the condition number for the arc-
cosine (dash line) and arc-sine (solid line) are shown. The
x-axis refers to 0.5 multiplied by the sampling frequency.
Both condition numbers are equal at 0.1348 and 0.4455.

all the estimates using (4), (5), (6). A discrete-space ex-
tension of the algorithm can be developed using the quasi
eigenfunction approximation [7]. This leads to the follow-
ing formulas for estimating the instantaneous frequency vec-
tors:

∂ϕ

∂x
(k1, k2) ≈ arcsin

[
fAS(k1 + 1, k2)− fAS(k1 − 1, k2)

2jfAS(k1, k2)

]
,

(7)

∂ϕ

∂y
(k1, k2) ≈ arcsin

[
fAS(k1, k2 + 1)− fAS(k1, k2 − 1)

2jfAS(k1, k2)

]
,

(8)

∂ϕ

∂x
(k1, k2) ≈ arccos

[
fAS(k1 + 1, k2) + fAS(k1 − 1, k2)

2fAS(k1, k2)

]
,

(9)

∂ϕ

∂y
(k1, k2) ≈ arccos

[
fAS(k1, k2 + 1) + fAS(k1, k2 − 1)

2fAS(k1, k2)

]
.

(10)

To recognize the instabilities associated with (7)-(10), we
compute the condition numbers for arcsin(.), . . . , arccos(.)
for different instantaneous frequencies (see section 3.1).

3. FAST AND ACCURATE DEMODULATION OF
DIGITAL IMAGES

In subsection 3.1, we begin with a brief summary of how
to extend the demodulation method of section 2 to become
robust. In section 3.2, we present a novel, two-dimensional
AM-FM demodulation method based on the quasi-local method
of [8]. A general discussion on fast implementations is
given in section 3.3.

3.1. Robust Demodulation Using the Quasi-Eigenfunction
Approximation

It can be shown that the quasi-eigenfunction approximation
described in (7)-(10) is numerically unstable. To show this,

we compute the condition numbers of each one of the in-
verse trigonometric functions, and note that they can grow
unbounded at different frequencies (also see [9] for the def-
inition of the condition number). However, it turns out that
the functions are unbounded over different, discrete fourier
frequencies (see Figure 1). Thus, a robust demodulation al-
gorithm can be designed that chooses between (7) and (9)
and also between (8) and (10) for estimating the compo-
nents of the instantaneous-frequency. We will later show
that dramatic improvements are possible using this approach.

3.2. Continuous-Space, Multidimensional Demodulation
for the Quasi-Local Method

To develop the new algorithm, we first assume that the in-
put image is a single AM-FM harmonic f(x, y) = a(x, y)
cos ϕ(x, y). For estimating the IA, we first note that

2f2(x, y) = a2(x, y) + a2(x, y) cos(2ϕ(x, y)). (11)

Thus, if we use a lowpass filter h(.) to reject the second term
in (11), we get the IA estimate

â(x, y) =
√

2f2(x, y) ∗ h(x, y). (12)

We define

gx(ε1, ε2) = f(x + ε1, y)f(x− ε2, y). (13)

which reduces to

gx(ε, ε) =
ax(ε, ε)

2
cos (ϕ(x + ε, y)− ϕ(x− ε, y))

+
ax(ε, ε)

2
cos (ϕ(x + ε, y) + ϕ(x− ε, y)) (14)

where ax(ε1, ε2) = a(x + ε1, y)a(x − ε2, y). The basic
assumption for IF estimation is that we can design a lowpass
filter to reject the second term in (14). Similarly, we use
the same lowpass filter to filter out the second terms from
the expansions of gx(ε, 0) and gx(0, ε). We note that the
lowpass filter must be chosen so that it contains the desired
AM-FM component, for a single, dominant component. In
the presence of multicomponent signals, we must rely on
prior, bandpass filtering, where the basic assumption is that
there is only one AM-FM component coming out of each
band.

Define Rx by

Rx(ε) =
2h(x, y) ∗ {gx(ε, ε)}

h(x, y) ∗ {gx(ε, 0) + gx(0, ε)} (15)

Using Rx, we can get an IF estimate along the x-component
using
∣∣∣∣
∂ϕ(x, y)

∂x

∣∣∣∣ = lim
ε→0+

{
1
ε

arccos

(
Rx(ε) +

√
R2

x(ε) + 8
4

)}
.



The discrete-space algorithm follows directly by consider-
ing a discrete lattice for x, y, so that (x, y) = (n∆x, m∆y),
for n, m ∈ Z and for ε to be some positive integral multi-
ple of ∆x. For the y-dimension, a similar approach can be
taken. Furthermore, it is straight-forward how to extend the
algorithm for any finite number of dimensions.

To estimate the signs of the IF vector components, we
use a hybrid approach that uses (6) to determine the sign.
Furthermore, in our hybrid approach, we use (5) for esti-
mating the phase.

3.3. Fast Implementations

Fast implementation of the AM-FM demodulation algorithm
is based on separable, one-dimensional implementations of
the lowpass and bandpass filters involved. Furthermore,
fast convolutions can be computed using the SIMD-FFT, an
adaptation of the fastest FFT algorithm to run on the Single
Instruction Multiple Data (SIMD) units of general-purpose
processors [10], [11]. We note that separable implementa-
tions provide linear memory access and can yield signifi-
cant speed improvements over non-separable implementa-
tions. Also, SIMD implementations can yield speedups of
the order of the number of packed data elements that are
processed in parallel. Currently, this yields a four-fold in-
crease in speed [10], [11].

4. RESULTS

In this section, we present three sets of results. We present
comparative results from a one-dimensional chirp signal,
demodulation from a two-dimensional chirp image, and a
real-life example.

In table 1, we present comparative results for a noisy
chirp signal. We note that for all methods two bandpass
filters were used, and the resulting estimates were taken
from the filter that gave the largest response at each sample
(dominant component analysis) [5]. Let f(k) = sin(2π ·
(0.01 + 0.5 · ξ(k)) · k) + 0.05 · η(k) be the input signal,
where ξ(k) = 0.49

N k and k ∈ [0, N − 1], with η ∼ N (0, 1),
and N = 512. The analytic signal was computed via the
Discrete Fourier Transform (first row) and Hilbert trans-
former (second row) using 31 coefficients. In the third row
of the table, we present the results when using the Hilbert
Transformer with the robust extension of section 3.1. The
results for the IF and IA estimation of the proposed hybrid
method of section 3.2 are shown in the fourth and last rows,
respectively.

We note the significant improvements in both IF and IA
estimation. The improvements in the IA estimation are due
to the accurate estimation of the IF, because both IA ampli-
tudes are obtained by dividing the output of the bandpass
filters by their magnitude response at the IF.

MSE(ω̂ − ω) ‖ω̂ − ω‖2 VAR( ω̂−ω
ω )

IF using FFT 0.002026 1.017 5.726
IF using Hil. 0.001294 0.812 4.804

Robust IF 0.000968 0.703 0.366
Hybrid IF 0.000006 0.055 0.010

MSE(â - a) ‖ â - a‖2 VAR( â-a
a )

Basic IA 0.019 3.107 0.019
Hybrid IA 0.005 1.585 0.005

Table 1. Performance measurements for instantaneous am-
plitude (IA) and instantaneous frequency (IF) estimation.

All 2D examples are computed using spatial-convolutions
and four bands. Using separable implementations with 1D
filters with 30 taps, for 512×512 images, the proposed algo-
rithm requires approximately 0.2 seconds per band, on a 3
GHz Pentium4 (L2 cache 512k) using Linux (kernel 2.6.10).
A two-dimensional chirp example is presented in Figure 2.
The reconstruction error is relatively low, with the exception
of very low frequencies (see figure 2(c)). A real-life image
example is presented in figure 3. From the reconstruction
of figure 3(d), we see that the image is approximated rather
well by the single AM-FM harmonic. As shown in the nee-
dle plot, high magnitude IF vectors are measured over the
tree-rings and the edges of the tree, while low magnitude IF
components are measured in the region outside the rings.

(a) (b)

(c) (d)

Fig. 2. Radial Chirp: (a) original image, (b) downsampled
IF needle plot, (c) IA, and (d) reconstructed image.



(a) (b)

(c) (d)

Fig. 3. Red oak: (a) original image , (b) IF needle plot , (c)
IA and (d) reconstructed image (photo c© H.D. Grissino-
Mayer, http://web.utk.edu/ grissino/gallery.htm).

5. CONCLUSION

We presented novel methods for non-parametric AM-FM
demodulation of digital images. The algorithms were shown
to be fast and more robust than existing algorithms. We
believe that a wide range of applications can benefit from
faster and robust methods of image demodulation. Clearly,
all prior applications that were based on AM-FM demod-
ulation can benefit from using the algorithms presented in
this paper.
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